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Abstract. A microscopic approach to the investigation of the behaviour of a symmetrical binary
fluid mixture in the vicinity of the vapour–liquid critical point is proposed. It is shown that
the problem can be reduced to the calculation of the partition function of a three-dimensional
Ising model in an external field. For a square-well symmetrical binary mixture we calculate
the parameters of the critical point (critical temperature and critical density) as functions of the
microscopic parameters: the parameter r measuring the relative strength of interactions between
the particles of dissimilar and similar species and the parameter λ measuring the width of the
potential well. The results obtained agree well with the ones from computer simulations.

1. Introduction

Binary mixtures in contrast to their constituent components can exhibit three different types of
two-phase equilibrium: vapour–liquid, liquid–liquid and gas–gas [1,2]. The possibility of the
realization of these phenomena and their priority depend both on the external conditions and the
microscopic parameters of a mixture. The study of the influence of interparticle interactions on
the critical properties of a binary mixture is an interesting and relevant problem. During the last
decade this problem has been intensively studied by means of integral equation theories (IETs).
The advantages and limitations of these approaches were recently described by Caccamo in
his extensive review [3]. Here we briefly point out some key features of IETs concerning the
phase equilibria and critical properties of classical fluids.

The well-known IETs, such as the mean-spherical approximation (MSA), the Percus–
Yevick (PY) equation and the hypernetted-chain (HNC) equation, do not have a solution inside
a certain region. In the case of the MSA, the boundary line of this forbidden region coincides
with a spinodal line [4–6]. The MSA predictions for the existence of the critical points and the
spinodal turn out to be qualitatively correct, although the thermodynamic inconsistency of the
theory forbids making a quantitative estimate of the location of these features. The PY equation
and the HNC equation either do not predict the correct diverging trend of the compressibility
when the spinodal is approached or do not predict any divergence at all [5, 7–9]. The modified
hypernetted-chain (MHNC) theory is able to predict quite satisfactorily the liquid and the
vapour branches of the binodal of a simple fluid at low enough temperature, but it fails to
converge close to the critical point and the position of the critical point is not given directly
by the theory but is to be determined by extrapolation [10, 11]. Therefore, the IETs, although
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they play an important role in the understanding of the properties of the liquid state, are not
able to give a correct description of the fluid behaviour close to the critical point.

Of special interest is the hierarchical reference theory (HRT) concerned with the study of
both universal and non-universal properties [12–17]. In this theory the long-wavelength part
of the interaction is turned on gradually and the corresponding evolution of thermodynamic
quantities and correlation functions is expressed by an infinite hierarchy of exact integro-
differential equations. A simple closure of the hierarchy (the Ornstein–Zernike ansatz) yields
non-classical critical exponents with the correct scaling regime. The HRT was applied to one-
and two-component fluids. The results were found to be in good agreement with both numerical
simulations and experiments. However, since this method is computationally intensive, its
application is limited.

On the other hand, the critical properties of simple fluids and binary mixtures have recently
been studied using Monte Carlo (MC) simulations [18–24]. In [24] the vapour–liquid critical
temperature was calculated for a symmetrical mixture of hard spheres interacting via square-
well potentials. Thus, it is interesting to test the theory using such a simple binary fluid
model.

In the present paper we propose a microscopic approach to the study of the vapour–
liquid critical point of a symmetrical binary mixture. This approach is based on the method
of collective variables (CV) [25]. Its characteristic feature, in comparison with the above-
mentioned theories, is that it allows one to determine, on microscopic grounds, the explicit
form of an effective Ginzburg–Landau–Wilson (GLW) Hamiltonian and then to integrate the
partition function in the neighbourhood of the phase transition point taking into account the
renormalization group (RG) symmetry. This method appears to be successful in describing the
second-order phase transition of the 3D Ising model [26] and the vapour–liquid critical point
of a one-component fluid [27]. On the basis of this approach, both universal and non-universal
quantities were obtained.

In [28] the CV method with a reference system (RS) was generalized for the case of a
grand canonical ensemble for a multicomponent continuous system. Using this approach the
phase diagram of the symmetrical mixture was examined within the framework of the Gaussian
approximation [29–31].

In this paper we determine an explicit form of the effective GLW Hamiltonian of the
symmetrical binary mixture in the vicinity of the vapour–liquid critical point. Then we integrate
the functional of the grand partition function by the use of the layer-by-layer integration method
proposed in [26] for the 3D Ising model. As a result of this integration one obtains recursion
relations for the coefficients of the GLW Hamiltonian. The analysis of these relations yields
an equation for Tc. Here we avoid extensive consideration of the results pertaining to the Ising
model and call the readers’ attention to [26] where this problem was studied in detail. The
method which we describe here yields the same critical exponents as in [32] (see table 1).

Table 1. Values of the critical exponents and the ratios of the critical amplitudes for the 3D Ising
model obtained within the framework of the CV method [32].

ν α β γ A+/A− �+/�−

0.637 0.088 0.319 1.275 0.435 6.967

The paper is organized as follows. We give a functional representation of the grand
partition function of a two-component continuous system in section 2 and appendix A. In
section 3 we construct the basic density measure (the GLW Hamiltonian) with respect to the
CV which include a variable corresponding to the order parameter. In this section we also
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present the basic ideas of the method of partition function integration in the vicinity of the
critical point. In section 4 we apply our formalism to calculating the critical characteristics
(temperature and density) of the binary square-well symmetrical mixture. The results obtained
are discussed and compared with the MC simulation data reported recently by Wilding [24]
and de Miguel [23].

2. Functional representation of the grand partition function of a binary mixture

Let us consider a binary fluid mixture consisting ofNa particles of species ‘a’ andNb particles
of species ‘b’. The system is in volume V at temperature T . Let us assume that an interaction
in the system has a pairwise additive character. The interaction potential between particle γ
at ri and particle δ at rj can be expressed as a sum of two terms:

Uγδ(|ri − rj |) = �γδ(|ri − rj |) +�γδ(|ri − rj |) (1)

where �γδ(r) is a potential of a short-range repulsion and �γδ(r) is an attractive part of the
potential which dominates at large distances.

A functional of the grand partition function (GPF) of the binary homogeneous system in
the CV method with a RS can be represented as a product of two factors (see appendix A):

� = �0�1 (2)

where �0 is the GPF of the RS which we suppose to be known. �1 is the part of the GPF
which is written in the CV space:

�1 =
∫
(dρ) (dc) exp

{
βµ+

1ρ0 + βµ−
1 c0

− β

2

∑
k

[
Ṽ (k)ρkρ−k + 2Ũ (k)ρkck + W̃ (k)ckc−k

] }
J (ρ, c). (3)

The chemical potentials

µ+
1 = 1√

2
(µa1 + µb1) µ−

1 = 1√
2
(µa1 − µb1)

are determined from the conditions
d ln�1

dβµ+
1

= 〈Na〉 + 〈Nb〉 = 〈N〉 (4a)

d ln�1

dβµ−
1

= 〈Na〉 − 〈Nb〉. (4b)

The functions Ṽ (k), W̃ (k) and Ũ (k) are combinations of Fourier transforms of the initial
interaction potentials �̃γ δ(k):

Ṽ (k) =
(
β−1

2

)
[αaa(k) + αbb(k) + 2αab(k)]

Ũ (k) =
(
β−1

2

)
[αaa(k)− αbb(k)] (5)

W̃ (k) =
(
β−1

2

)
[αaa(k) + αbb(k)− 2αab(k)] .

Also,

J (ρ, c) =
∫
(dν) (dω) exp

{
i 2π

∑
k

(ωkρk + νkck) +
∑
n�1

∑
in�0

D(in)
n (ω, ν)

}
(6)
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is a Jacobian for the transition to the CV ρk, ck averaged on the RS; the variables ωk, νk are
conjugate to the variables ρk, ck, respectively; also,

D(in)
n (ω, ν) = (−i 2π)n

n!

(
1

2

)n/2

×
∑

k1,...,kn

M(in)
n (k1,k2, . . . ,kn)νk1 · · · νkin ωkin+1 · · ·ωknδk1+···+kn . (7)

Index in indicates the number of variables νk in the cumulant expansion (7). The cumulants
M(in)

n (k1,k2, . . . ,kn) are linear combinations of the initial cumulants Mγ1···γn(k1,k2, . . . ,kn)

(γi = a, b) (see appendix B). In general, the dependence of Mγ1···γn(k1,k2, . . . ,kn) on
the wave vectors k1,k2, . . . ,kn is complicated [28]. Since we are interested in the critical
properties, the small-k expansion of the cumulants can be considered. Hereafter we shall
replace Mγ1···γn(k1,k2, . . . ,kn) by their values in the long-wavelength limit and we shall
discuss this approximation in section 4.

We consider a symmetrical binary fluid mixture (SBFM), i.e. a system in which the
two pure components ‘a’ and ‘b’ are identical and only interactions between the particles
of dissimilar species differ. Notwithstanding its simplicity, the SBFM exhibits all the three
types of two-phase equilibrium which are observed in real binary fluids, namely: vapour–
liquid, liquid–liquid and gas–gas equilibria. For the SBFM Ũ (k) = 0 in (3) and there are only
terms with even indices in in the cumulant expansion (7) [30].

3. The method

As was already shown [30], the phase diagram of the SBFM consists of three ranges (see
figure 1): (1) gas–gas separation and vapour–liquid phase transitions; (2) vapour–liquid and
liquid–liquid phase transitions; (3) vapour–liquid phase transition only.

Figure 1. Three phase regions of the symmetrical mixture depending on the microscopic par-
ameters: (1) gas–gas and vapour–liquid phase transitions (T g−gc > T v−lc ); (2) vapour–liquid and
liquid–liquid phase transitions (T v−lc > T l−lc ); (3) vapour–liquid phase transition only. S2 is the
two-particle structure factor of the reference system.

The order of priority of the vapour–liquid and separation phase transitions depends on
both the external conditions and the microscopic properties of the system. There exist two
critical temperature branches in such a system: branch (T v−lc ) connected with the variable ρ0

and branch (T sepc ) connected with the variable c0 [30]. All the thermodynamic functions of
the SBFM are symmetrical with respect to the concentration x = 0.5 and have an extremum
at this point [1, 29]. The concentration x = 0.5 is a critical one for this model mixture.
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We consider a symmetrical fluid mixture whose parameters satisfy the following condition:

r > L L = 1 − S2(0)

1 + S2(0)
.

It corresponds to ranges 2 (L < r < 1) and 3 (r > 1) on the phase diagram (see figure 1). In
this paper we study the vapour–liquid critical point.

In the case of the SBFM the variables ρ0 and c0 are connected with the order parameters
for the vapour–liquid and separation phase transitions, respectively [30]. This fact allows us
to separate the CV ρk and ck into essential and non-essential ones depending on the phase
transition considered. Since we are interested in the vapour–liquid critical point, we can
consider the CV ck (and νk) to be non-essential (the CV ck do not contain a variable connected
with the order parameter; the coefficients standing at the second power of ck (and νk) are
negative) and we can integrate over ck (and νk) with the Gaussian density measure. As regards
the CV ρk, it is necessary to construct the basic density measure taking into account higher
powers of ρk (we shall consider a ρ4-model).

As a result of integrating in (3)–(7) over the variables ck (and νk) we obtain for the GPF

� = �0�
c
G

∫
(dρ) exp

{
βµ+

1ρ0 − β

2

∑
k

Ṽ (k)ρkρ−k

}
J (ρ) (8)

where

�c
G =

∏
k

1√
1 + βW̃(k)M(2)

2 (0)/2
(9)

J (ρ) =
∫
(dω) exp

{
i 2π

∑
k

ωkρk +
4∑

n�1

(−i 2π)n

n!

(
1

2

)n/2

×
∑

k1,...,kn

Mn(0)ωk1 · · ·ωknδk1+···+kn

}
(10)

Mn(0) = M(0)
n (0) +/Mn. (11)

/Mn are the corrections obtained as the result of integration over variables ck:

/M1 = M(2)
3 (0)

12

1

〈N〉
∑

k

g̃(|k|)

/M2 = M(2)
4 (0)

12

1

〈N〉
∑

k

g̃(|k|) +
(M(2)

3 (0))2

72

1

〈N〉2

∑
k

g̃(|k|)g̃(|k1 − k|)

/M3 = M(2)
3 (0)M(2)

4 (0)

48

1

〈N〉2

∑
k

g̃(|k|)g̃(|k1 − k|)

+
(M(2)

3 (0))3

6

1

〈N〉3

∑
k

g̃(|k|)g̃(|k1 + k|)g̃(|k2 − k|)

/M4 = (M(2)
4 (0))2

96

1

〈N〉2

∑
k

g̃(|k|)g̃(|k1 − k|)

+

(M(2)
3 (0)

3!

)4 1

〈N〉4

∑
k

g̃(|k|)g̃(|k1 + k|)g̃(|k2 − k|)g̃(|k3 + k1 + k|)

(12)

where

g̃(k) = − β〈N〉W̃ (k)

1
2βW̃(k)M(2)

2 (0) + 1
. (13)
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In figure 2 the typical behaviour of the potential Ṽ (k)/|Ṽ (0)| is shown.
Let us further assume that Ṽ (k) = 0 at |k| > B. Then, integration in (8) over ρk with

|k| > B leads to δ-functions and the expression for � contains only the sums over k with
|k| � B.

0 5 10 15
-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

B

V
(k

)/
|V

(0
)|

kσ

Figure 2. The behaviour of the Fourier transform Ṽ (k)/|Ṽ (0)| of the attractive part of the
interaction potential V (r).

We consider a set of k-vectors, |k| � B, as corresponding to the sites of a reciprocal
lattice conjugate to a certain block lattice {rl} withNB block sites in the periodicity volume V :

〈NB〉 = V

C3
= V

(π/B)3
= (Bσ)3〈N〉

6π2η
. (14)

η = (π/6)ρσ 3 is fraction density. Therefore, one may consider the quantity B as the size of
the first Brillouin zone of this block lattice.

The shift

ωk = ω′
k +/δk

ρk = ρ ′
k + M̃1δk

where

/ = − i

2π

M̄3(0)

M̄4(0)

M̃1 = M̄1(0)− M̄2(0)M̄3(0)

M̄4(0)
+

M̄3
3(0)

3M̄2
4(0)

(M̄n(0) = Mn(0)/(
√

2)n, n = 1, . . . , 4), transforms � into a form containing terms M̃1(0),
M̃2(0) and M̃4(0) only (the primes on ρk and ωk are omitted for clarity):

� = �0�
(1)
G

∫
exp

{
µ∗ρ0 − β

2

∑
k<B

Ṽ (k)ρkρ−k

+ i 2π
∑
k<B

ωkρk − (2π)2

2
M̃2(0)

∑
k<B

ωkω−k − (2π)4

4!〈NB〉 |M̃4(0)|

×
∑

k1,...,k4<B

ωk1ωk2ωk3ωk4δk1+···+k4

}
(dω)NB (dρ)NB (15)
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where

�
(1)
G = �c

G exp

{
µ∗M̃1 +

βṼ ∗(0)
2

M̃2
1 − M̄1(0)M̄3(0)

M̄4(0)
− M̄2(0)M̄2

3(0)

2M̄2
4(0)

− M̄4
3(0)

8M̄3
4(0)

}

µ∗ = h− a1 a1 = M̄3(0)

|M̄4(0)|
+ βṼ ∗(0)M̃1 h = βµ+

1

M̃2(0) = M̄2(0)− M̄2
3(0)

2M̄4(0)

M̃4(0) = 〈NB〉M̄4(0).

(16)

(d · · ·)NB implies that the vector k takes the 〈NB〉 values inside the first Brillouin zone:

(dρ)NB = dρ0

∏
k<B

′
dρck dρsk

(dω)NB = dω0

∏
k<B

′
dωck dωsk.

Expression (15) for� corresponds to the Ising model in the external field (a1 −βµ+
1) with one

difference: the cumulants M̃2(0), M̃4(0) are functions of the fraction density η, temperature
T and parameters of the attractive interaction �̃γ δ(k).

After integration over ωk, we obtain the following form for the GPF:

� = �0�
(1)
G

[
Z(M̃2,M̃4)

]〈NB 〉
(
√

2)〈NB 〉−1
∫

exp[E4(ρ)] (dρ)
NB . (17)

Here

E4(ρ) = µ∗ρ0 − 1

2

∑
k<B

d2(k)ρkρ−k − a4

4!〈NB〉
∑

k1,...,k4<B

ρk1 · · · ρk4δk1+···+k4 + · · · (18)

and

Z(M̃2,M̃4) =
(

1

2π

)1/2( 3

|M̃4(0)|

)1/4

ex
2/4U(0, x)

d2(k) = a2 + βṼ (k) a2 =
√

3

|M̃4(0)|
K(x)

a4 = 3

|M̃4(0)|
L(x)

(19)

where

K(x) = U(1, x)/U(0, x)

L(x) = 3K2(x) + 2xK(x)− 2

x =
√

3

|M̃4(0)|
M̃2(0).

(20)

U(a, x) is a parabolic cylinder function [33]. Expressions (17)–(20) have the same forms as
similar expressions for a one-component system obtained in [27]. This coincidence is achieved
due to the symmetry of the model under consideration. E4(ρ) is the Ginzburg–Landau–Wilson
Hamiltonian for the SBFM in the vicinity of the vapour–liquid critical point.

In order to integrate the GPF (17)–(20) over ρk and determine the critical temperature,
we use the method developed in [26, 34] for the Ising model. The essence of the method
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consists in subsequent integration over the layers of the CV space, beginning from the ρk

which correspond to short-wavelength fluctuations. Variations of the coefficients of E4(ρ) as
the result of integration over ρk in n subsequent layers of CV phase space are described by
the recursion formulae derived in [26]. For the case T > Tc in the interval [0, B] there exist
three characteristic regions [26]. The first region Bmτ

< k � B corresponds to the strongly
correlated fluctuations ρk; their density measure is non-Gaussian. The procedure based on
the renormalization group symmetry is valid here. This is the region of the critical regime
(CR). The second region 0 < k � Bmτ

is related to the fluctuation distributed according to the
Gaussian density measure. This is the limiting Gaussian regime (LGR).

The third region consists of the point k = 0. The variable ρ0 is a macroscopic one and
corresponds to the fluctuations of the particle density in the ‘external field’ µ∗.

We integrate (17) according to the following scheme [26]. The region (0, B) is divided
into the intervals (B1, B), . . . , (Bi+1, Bi), . . ., where Bn = B/Sn (S is a division parameter).
Each interval corresponds to a layer of subscripts k in the Brillouin zone and each layer
of subscripts k corresponds to a layer in the phase space ρk. Integrating gradually over
the layers we get a block lattice sequence with an appropriately growing block period and
with the Hamiltonian corresponding to each block. Each Hamiltonian is characterized by
the coefficients d2, a4; d(1)2 , a

(1)
4 ; d(2)2 , a

(2)
4 , etc. For the sequence of the block Hamiltonians

{d(n)2 , a
(n)
4 } the renormalization group symmetry holds and the fixed point is of saddle type.

Because the explicit expressions for the initial values of the coefficients d(k) and a4 are given
(see (18)–(20)), the solutions of the renormalization group type are functions of microscopic
parameters, density and temperature.

Generally, the division parameter S > 1 can take arbitrary values, but the highest prec-
ision of the results is achieved at some optimal value S = S∗ depending on the approx-
imation considered. For example, if we have a φ4-model approximation, the optimal value is
S∗ = 3.4252 providing that the coefficient d(n)2 (0) is equal to zero at the fixed point [26, 27].

The CR arises for all the variables ρk at the critical point. Therefore, the critical
temperature can be determined from the solution of recurrent equations (see appendix C).
Combining (C.5) with (C.4) we derive the formula

A(βṼ (0))2 + B(βṼ (0)) +D = 0 (21)

where

A = 1 − f0 − R(0)√ϕ0

B = −a2

D = a4R
(0)/

√
ϕ0.

f0, ϕ0 are coordinates of the reduced fixed point; R(0) is a universal function of the parameter
S. The optimal value of S is 3.4252 and the values of f0, ϕ0, R

(0) corresponding to it are taken
from [34]. From the condition µ∗ = 0 we obtain the second equation [27]:

M3(0) = 0 (22)

which allows us to determine the critical density of the system.

4. Results and discussion

In this section we present our results for the vapour–liquid critical point of symmetrical
mixtures, obtained using the method proposed above. These results are compared with those
previously obtained by Monte Carlo simulations [23, 24].
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The system under study is a symmetrical hard-sphere square-well binary mixture. The
interaction potential of the particles is given by

Uγδ(r) =




∞ if r < σ

−εγ δ if σ � r < λσ

0 if r � λσ

where σ is the hard-sphere diameter, λ is the range of the potential and εγ δ is the well depth
of the interaction between the particles of types γ and δ.

The square-well potential is the simplest model which includes the presence of attractive
and repulsive forces. It is widely used to model the interaction of uncharged colloidal particles
[36–38]. Moreover, this model is of substantial theoretical importance for the studies of
systems with a varying potential range since it can represent three limiting cases, namely, a
hard-sphere fluid, a short-range sticky-sphere fluid and a long-range van der Waals fluid.

For a symmetrical mixture, εaa = εbb = ε �= εab. In our formalism a completely analytical
treatment for general λ is possible.

We split the potential Uγδ(r) into short- and long-range parts using the Weeks–Chandler–
Andersen partition [39]. As a result, we have

�γδ(r) =
{

∞ r � σ

0 r > σ
(23)

�γδ(r) =
{

−εγ δ 0 � r � λσ

0 r > λσ .
(24)

For the WCA partition,�γδ(r) is perfectly smooth in the core region. As was shown [40],
this partition provides the best estimates for thermodynamic functions of the Lennard-Jones
fluid.

In our case the RS is a one-component hard-sphere system with the diameter σ (see (23)).
In this case we can use the results for Mn(k1, k2, . . . , kn) obtained in [27]. As was shown [27],
the distinctive feature of M2(k) is an almost horizontal ‘shoulder’ at small k. Moreover, a
weak dependence on k at small k is a common property of the cumulants of higher order
(n = 3, 4). This allows us to replace the functions Mn(k1, k2, . . . , kn) at ki < B by constant
values Mn(0, 0, . . . , 0).

The Fourier transform of function (24) has the form

�̃γ δ(k) = �̃γ δ(0)
3

(λx)3
[−λx cos(λx) + sin(λx)]

where

x = kσ �̃γ δ(0) = −εγ δσ 3(4π/3)λ3.

The cumulants M(in)
n (0, . . . , 0) are calculated according to the formulae given in

appendix B. Both the Percus–Yevick (PY) approximation and the Carnahan–Starling (CS)
approximation are used for S2(0).

The solutions of equations (21) and (22) are found numerically using a self-consistent
procedure by means of which the dependencies of the coefficients a2 and a4 (as well as the
cumulants Mn(0)) on βc are taken into consideration.

The vapour–liquid critical temperatures Tc (Tc = kBT /ε) versus the microscopic para-
meter r (r = εab/ε is a dissimilar-interaction strength) are shown for λ = 1.5 and λ = 2.0 in
figure 3. It is seen that the vapour–liquid critical temperature of the square-well binary mixture
increases almost linearly with increasing r .



1604 O V Patsahan et al

0.8 1.0 1.2 1.4
1.0

1.1

1.2

1.3

1.4

1.5

1.6

      λ=1.5
 Gaussian approx.

 ρ
4
 model approx.

T
c

r
 

0.8 1.0 1.2 1.4 1.6 1.8 2.0

2.5

3.0

3.5

4.0

4.5

       λ=2.0
 Gaussian approx.

  ρ
4
 model approx.

T
c

r

Figure 3. The vapour–liquid critical temperature as a function of the microscopic parameter r at
λ = 1.5 (top) and λ = 2.0 (bottom).

In figure 4 we demonstrate the dependence of the critical density ηc on r for λ = 1.5 and
λ = 2.0. There is a region of r (0.9 < r < 1.1) on this plot where ηc remains almost constant
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0.12

0.13
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0.15

  λ=1.5
  λ=2

η ηηη
c

r

Figure 4. The critical density
as a function of the microscopic
parameter r .
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and then (r > 1.1) it decreases with increasing r . Also, in the region r > 1.1 the values of ηc
for λ = 2.0 are higher than the ones for λ = 1.5. The curves depicted in figures 3 and 4 are
obtained when the PY approximation for S2(0) is used.

Figures 5 and 6 display the results for Tc and ηc versus r when both approximations (PY
and CS) for S2(0) are used. As can be seen, there are no significant discrepancies between
the results; that is, the CS equation gives slightly higher values for Tc and ηc than the PY
approximation.
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Figure 5. The vapour–liquid critical temperature versus r when the PY approximation and the CS
approximation for S2(0) are used.

0.9 1.0 1.1 1.2 1.3 1.4

0.120

0.124

0.128

0.132

0.136

      λ=1.5
 CS approx.
 PY approx.

r

η ηηη
c

 

Figure 6. The critical density versus r when the PY approximation and the CS approximation for
S2(0) are used.

In figure 7 the vapour–liquid critical temperature of the square-well binary mixture is
plotted as a function of the width of the potential well λ for different r-values. Figure 8
shows the λ-dependence of the coefficients ac2 = a2(T = Tc, η = ηc, r = 1) and
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Figure 7. The vapour–liquid critical temperature as a function of the width of the potential well λ.
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Figure 8. Coefficients ac2 and ac4 of the effective GLW Hamiltonian as functions of the width of
the potential well λ.

ac4 = a4(T = Tc, η = ηc, r = 1) of the effective GLW Hamiltonian (18). It is not surprising
that for large values of λ the critical behaviour of the system becomes mean-field-like.

We also compare our results with those obtained from MC simulations: for λ = 1.5
and r = 0.72 we have Tc = 1.055, while the MC simulations give Tc = 1.06(1) [24];
for λ = 2.0 and r = 1.0 (the case with r = 1.0 corresponds to a one-component system)
we obtain Tc = 2.753 and ηc = 0.129, while the simulations give Tc = 2.684(51) and
ηc = 0.123(43) [23].
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5. Conclusions

In this paper we propose a method for the study of the vapour–liquid critical point of a
symmetrical binary mixture depending on its microscopic properties. We apply this method
to the hard-sphere square-well binary mixture. For this model we calculate the critical
temperature and critical density versus the microscopic parameter r measuring the dissimilar
interaction in the system as well as versus the width of the potential well. Our results agree well
with those obtained by using MC simulations. We can improve our results in the following
ways: (1) taking into consideration the region of k with |k| > B (see figure 2); (2) using a
higher approximation than the ρ4-approximation.

Having tested the theory by using the results of MC simulations for such a simple model
we can apply it to more realistic systems—for example, the hard-sphere Yukawa mixtures and
the Lennard-Jones mixtures. The relevant results will be given in a subsequent paper.

Appendix A

A grand partition function of a two-component fluid system in the CV representation with a
RS can be written as in [28]:

� = �0�1

where

�0 =
∞∑

Na=0

∞∑
Nb=0

b∏
γ=a

exp

[
βµ

γ

0Nγ

Nγ !

] ∫
(d�) exp

[
−β

2

∑
γ,δ=a,b

∑
i,j

ψγ δ(rij )

]

is a grand partition function of the RS; β = 1/kBT , kB is the Boltzmann constant, T is the
temperature; also,

(d�) =
∏
a,b

d�Nγ
d�Nγ

= dr
γ

1 dr
γ

2 · · · dr
γ

Nγ

is a volume element of the configurational space of the γ th species;µγ0 is the chemical potential
of the γ th species in the RS.

The part of the grand partition function which is defined in the CV phase space has the
form of a functional integral:

�1 =
∫
(dρ) exp

[
β

∑
γ

µ
γ

1ρ0,γ − 1

2β

∑
γ,δ=a,b

∑
k

αγδ(k)ρk,γ ρ−k,δ

]
J (ρa, ρb). (A.1)

Here,

(1) µγ1 is a part of the chemical potential of the γ th species:

µ
γ

1 = µγ − µ
γ

0 +
1

2β

∑
k

αγγ (k)

and is determined from the equation

∂ ln�1

∂βµ
γ

1

= 〈Nγ 〉

where µγ is a full chemical potential of the γ th species; αγδ(k) = (β/V )φ̃γ δ(k); 〈Nγ 〉 is
the average number of γ th-species particles.
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(2) ρk,γ = ρck,γ −iρsk,γ (γ = a, b) are collective variables of the γ th species, where the indices
c and s denote the real part and the coefficient of the imaginary part of ρk,γ ; ρck,γ and
ρsk,γ describe the value of the kth fluctuation mode of the number of γ th-species particles.
Each ρck,γ and ρsk,γ takes all the real values from −∞ to +∞. (dρ) is a volume element
of the CV phase space:

(dρ) =
∏
γ

dρ0,γ

∏
k �=0

′
dρck,γ dρsk,γ .

The prime means that the product over k is performed in the upper semi-space.

(3) J (ρa, ρb) is a Jacobian of the transition to the CV averaged on the RS:

J (ρa, ρb) =
∫
(dν)

b∏
γ=a

exp

[
i 2π

∑
k

νk,γ ρk,γ

]

× exp

[∑
n�1

(−i 2π)n

n!

∑
γ1,...,γn

∑
k1,...,kn

Mγ1···γn(k1, . . . ,kn)

× νk1,γ1 , . . . , νkn,γn

]

where the variables νk,γ are conjugate to the CV ρk,γ . Mγ1···γn(k1, . . . ,kn) is the nth
cumulant connected with Sγ1···γn(k1, . . . , kn), the n-particle partial structure factor of the
RS, by means of the relation

Mγ1···γn(k1, . . . ,kn) = n
√
Nγ1 · · ·NγnSγ1···γn(k1, . . . , kn)δk1+···+kn

where δk1+···+kn is a Kronecker symbol.

(4) φ̃γ δ(k) is a Fourier transform of the attractive potential φγδ(r). The function φ̃γ δ(k)

satisfies the following requirements: φ̃γ δ(k) is negative for small values of k and

lim
k→∞

φ̃γ δ(k) = 0.

We pass in (A.1) to the CV ρk and ck (related to ωk and γk) by means of the orthogonal
linear transformation

ρk =
√

2

2
(ρk,a + ρk,b)

ck =
√

2

2
(ρk,a − ρk,b)

ωk =
√

2

2
(νk,a + νk,b)

νk =
√

2

2
(νk,a − νk,b).

(A.2)

Now ρk and ck are connected with the total density fluctuation modes and the relative density
(or concentration) fluctuation modes, respectively.

As a result, for �1 we obtain formulae (3)–(7).
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Appendix B

The cumulants M(in)
n (0) with n � 4 are expressed in terms of the initial cumulants

Mγ1···γn(0, . . . , 0) (γ1, . . . , γn = a, b) as follows [30]:

M(0)
1 (0) = Ma(0) + Mb(0) = 〈N〉

M(1)
1 (0) = Ma(0)− Mb(0) = 〈Na〉 − 〈Nb〉

M(0)
2 (0) = Maa(0) + Mbb(0) + 2Mab(0)

M(1)
2 (0) = Maa(0)− Mbb(0)

M(2)
2 (0) = Maa(0) + Mbb(0)− 2Mab(0)

M(0)
3 (0) = Maaa(0) + Mbbb(0) + 3[Maab(0) + Mabb(0)]

M(1)
3 (0) = Maaa(0)− Mbbb(0) + Maab(0)− Mabb(0)

M(2)
3 (0) = Maaa(0) + Mbbb(0)− Maab(0)− Mabb(0)

M(3)
3 (0) = Maaa(0)− Mbbb(0)− 3[Maab(0)− Mabb(0)]

M(0)
4 (0) = Maaaa(0) + Mbbbb(0) + 4[Maaab(0) + Mabbb(0)] + 6Maabb(0)

M(1)
4 (0) = Maaaa(0)− Mbbbb(0) + 2[Maaab(0)− Mabbb(0)]

M(2)
4 (0) = Maaaa(0) + Mbbbb(0)− 2Maabb(0)

M(3)
4 (0) = Maaaa(0)− Mbbbb(0)− 2[Maaab(0)− Mabbb(0)]

M(4)
4 (0) = Maaaa(0) + Mbbbb(0)− 4[Maaab(0) + Mabbb(0)] + 6Maabb(0).

(B.1)

The same expressions hold at ki �= 0.
The nth cumulant M(in)

n (0) with in = 0 is connected to the nth structure factor of the
one-component system Sn(0) [30]:

M(0)
n (0) = 〈N〉Sn(0).

Structure factors Sn(0) (n � 2) can be obtained from S2(0) by means of a chain of
equations for correlation functions [35]. Cumulants with in �= 0 can be expressed in terms of
M(0)

n (0) (see formulae (4.8) in [30]).

Appendix C

After the layer-by-layer integration of the partition function (17) one obtains [26]

� = �0�
(1)
G

[
Z(M̃2,M̃4)

]〈NB 〉
(
√

2)〈NB 〉−1Q0Q1 · · ·Qn

× [Q(Pn)]
Nn+1

∫
exp[E(n+1)

4 (ρ)] (dρ)Nn+1

E
(n+1)
4 (ρ) = µ∗ρ0 − 1

2

∑
k<Bn+1

d
(n+1)
2 (k)ρkρ−k − a

(n+1)
4

4!Nn+1

∑
k1,...,k4<Bn+1

ρk1 · · · ρk4δk1+···+k4 + · · · .

Here Nn = 〈NB〉S−3n, Bn = BS−n. Qn is a partial partition function of the nth layer:

Q1/Nn

n = Q(Pn−1)Q(d
(n)
2 )
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where

Q(Pn) =
∫ +∞

−∞
ϕn(ω) dω

ϕn(ω) = exp

{
−(2π)2P (n)

2 ω2 − (2π)4

4!
P
(n)
4 ω4

}

Q(d
(n)
2 ) =

∫ +∞

−∞
fn(η) dη

fn(η) = exp

{
−1

2
d
(n)
2 (Bn+1, Bn)η

2 − 1

4!
a
(n)
4 η4

}

P
(n)
2 =

[
Q(d

(n)
2 )

]−1
∫ +∞

−∞
η2fn(η) dη

P
(n)
4 = S−3

{
−

[
Q(d

(n)
2 )

]−1
∫ +∞

−∞
η4fn(η) dη + 3(P (n)

2 )2
}
.

Coefficients d(n+1)
2 , a(n+1)

4 are linked to d(n)2 , a(n)4 by the recursion relations. The recursion
relations have the form [26]

rn+1 = S2(−q + (rn + q)N(xn))

un+1 = S4−dUnE(xn)
(C.1)

where the following notation is introduced:

rn = d
(n)
2 (0)S2n un = a

(n)
4 S4n

d
(n)
2 (0) = a

(n)
2 + βṼ (0)

q = q̄|βṼ (0)| q̄ = 1
2 (1 + S−2)

N(xn) =
(
yn

xn

)1/2
K(yn)

K(xn)

E(xn) = S2d L(yn)

L(xn)

xn = d
(n)
2 (Bn+1, Bn)(3/a

(n)
4 )1/2

yn = S3/2K(xn)(3/L(xn))
1/2

d
(n)
2 (Bn+1, Bn) = d

(n)
2 (0) + qS−2n.

Equations (C.1) have the fixed-point-type partial solution: rn = r∗, un = u∗. The pair of
numbers (rn, un) can be considered as coordinates of a point in a parametric space. As a result
of layer-by-layer integration we obtain a trajectory. For the ρ4-model there exists a unique
temperature for which the trajectory reduces to a point:

(rn, un) → (r∗, u∗) n → ∞
r∗, u∗ > 0.

The (r∗, u∗) point is a fixed point of the renormalization group transformation.
In the vicinity of the critical point we can use linear approximations in (C.1). We obtain(

rn+1 − r∗

un+1 − u∗

)
= R

(
rn − r∗

un − u∗

)
(C.2)
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whereR is a linearized renormalization group transformation matrix. In [26] a general solution
of (C.2) was found in the form

rn = r∗ + c1E
(n)
1 + c2E

(n)
2 R

un = u∗ + c1R1E
(n)
1 + c2E

(n)
2

(C.3)

where

R = R12

E2 − R11
R1 = E1 − R11

R12
.

Also, E1 and E2 are the eigenvalues of the matrix R; E1 > 1, E2 < 1. c1 and c2 are functions
depending on the temperature, density and interaction potential:

c1 = (a2 − β|Ṽ (0)| − r∗ + (a4 − u∗)R)w−1

c2 =
[
−(a2 − β|Ṽ (0)| − r∗)R1 + (a4 − u∗)

]
w−1

(C.4)

where

w = E1 − E2

R11 − E2
.

The solutions (C.3) are valid in the vicinity of the critical point including the critical point
itself. At the critical point the solutions rn, un at n → ∞ tend to the fixed-point values

lim
n→∞ rn = r∗ lim

n→∞ un = u∗.

This is possible only if c1 = 0. So from the equation

c1(Tc) = 0 (C.5)

using (C.4) we can find Tc.
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